
Transpiler and it’s Advantages
Rohit Kulkarni1, Aditi Chavan2, Abhinav Hardikar3

Department of Computer Engineering,
Modern College of Engineering, Shivaji Nagar, Pune, India

Abstract— This paper sheds some light on what a transpiler is
and it’s advantages when it is used with a normal compiler. It
also introduces a concept called “Pluggable Target Compiler”
and it’s advantages.

Keywords— Transpiler, Compiler, source-to-source compiler.

I. INTRODUCTION

Transpiler and Compiler are one of the major parts of a
larger domain called System Programming. A Compiler can
be simply defined as a program that reads a program in one
language, known as the source language and translates it
into an equivalent program in another language, known as
the target language.[1] In a simple compiler, source
language is a high level language and the target language is
the corresponding object program.[2]

A transpiler or a source-to-source compiler is a
compiler where the source language as well as the target
language is a high level language.

II. PHASES OF A TRANSPILER

A transpiler has phases very similar to that of a compiler.
The phases are:

1. Lexical Analysis: In this phase each character is read
and grouped into meaningful sequences called
lexemes[1] or tokens. For example, consider the
following sentence:

“IBatType baseBallBat = new BaseBallBat(“my bat”);”

After lexical analysis the following lexemes are
generated:

a. IBatType
b. baseBallBat
c. =
d. new
e. BaseBallBat
f. (
g. “my bat”
h.)
i. ;

2. Syntactic Analysis: This is the phase where the
lexemes are parsed and major constructs of the
language are recognised. These constructs are then
represented in the form of a tree structure called a
syntax tree. [1]

3. Semantic Analysis: Using the syntax tree the
semantic analyser checks for semantic consistency. For

example, to check whether all the variables in an
equation are of the same type. [1]

4. Intermediate Code Generation: For every construct
defined, there is a routine which is executed when the
respective construct is recognised during the syntactic
analysis.[2] These routines hold the intermediate code
structure, which is used to generate the intermediate
code. Intermediate code can be represented in a
structured form like the 3-Address code[1] or in any
structured language like XML or JSON.

5. Machine Independent Optimisation: The aim of this
phase is to optimise the intermediate code so that the
resultant target code that is generated will be better.[1]
Some of the goals of code optimisation are:

a. Discover program run-time behaviour at compile
time.

b. Speed up runtime execution of compiled code.
c. Reduce the size of compiled code.

6. Translation: In this phase intermediate code is
translated into the target cod with the help of
translation schemes.

Fig 1: Phases of a Transpiler

III. ADVANTAGES OF A TRANSPILER

Rohit Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1629-1631

www.ijcsit.com 1629

The following are the advantages of using a Transpiler:
1. A transpiler has the ability to translate it’s language

to the target language, which is then compiled using
the target language’s compiler to generate native or
VM code. Therefore the transpiler automatically
inherits the advantages of the target compiler.

2. Since the transpiler generates structured, human
readable intermediate code, it is easy to convert this
structured intermediate code to any other language
using a simple translator.

3. It reduces the amount of time taken to convert a
source code from one language to another language, as
it need not be done manually.

4. Larger constructs of the target language can be
shortened and implemented in the transpiler’s language
as smaller constructs. This would reduce the amount of
typing needed to get the work done and also reduce its
complexity.

5. Transpiler is a great medium to learn programming
as they can provide simplified syntaxes and constructs.

IV. PLUGGABLE TARGET COMPILER

What is a Pluggable Target Compiler?

One of the most famous cross-platform programming
languages is Java. It achieves the cross-platform ability by
using a executor called the Java Virtual Machine or the
JVM. JVM takes bytecode as input, converts it to native
code and executes it immediately. JVM has been
implemented in almost all major operating systems.

Before Java 7 was released to the public, Java was
criticised for being slow in comparison to native
programming languages like C [3]. Another criticism of
Java that still persists in Java 8 is the aloofness of API
(Application Programming Interface) from the native
system. An example of the aloofness can be the Look and
Feel (themes) of the applications developed in Java.
Another example can be the difficulty of using native APIs
of the client operating system.

To solve such issues a transpiler can be made in which
the code generator is separate. This code generator can be
plugged into the transpiler and can generate native code for
the respective operating systems thus allowing easy access
to the native APIs.

Another advantage of such a code generator is that it can
be programmed in any programming language and it gives
the developer the freedom of choosing the appropriate
target compiler. A target compiler is a compiler which
compiles the code generated by the code generator.

Fig 2: Block representation of a Pluggable Target Compiler.

This module of the code generator and the target
compiler bundled together is called the Pluggable Target
Compiler. Fig.2 shows a block representation of a
Pluggable Target Compiler.

How is a Pluggable Target Compiler used?

Consider two systems, one with Windows 7 and the
other with Apple Mac OS X. Windows 7 supports C++ for
native code generation and Mac supports Objective-C.

Therefore it is needed to create two pluggable target
compilers with:

1. Input: XML/JSON Intermediate Code
 Output: Objective-C source file
 Target Programming Language: Objective-C
 Written in: Objective-C

2. Input: XML/JSON Intermediate Code
 Output: C++ source file
 Target Programming Language: C++
 Written in: C++
In these target compilers, rules have to be written to

convert the intermediate code into equivalent target
language code.

To plug these target compilers, an interface is used. The
developer has to just select the correct interface and
compile the code.

Once the code has been translated into the respective
target language, the target compiler is run and the native
code is generated.

V. ADVANTAGES OF PLUGGABLE TARGET COMPILER

The aim of the transpiler with a pluggable target
compiler (TwPTC) is to generate runnable code on various
platforms without writing code for each platform. The
advantages of using a TwPTC are:

1) It generates native code which is generally faster
than the programs compiled using a cross-platform
compiler.

2) TwPTC generated code has easy access to the native
API as it is directly compiled to native code.

3) It allows for a single front-end (source language) to
have multiple back-ends (target languages) which is
advantageous over a normal transpiler.

4) Since the translation schemes are stored in it, it is
very easy to improve the efficiency of them and
regenerate the new code.

5) Since the Transpiler and the PTC are separate, they
can be installed on separate machines and using
network protocols it can allow compiling over any
network.

6)

VI. CONCLUSION

There are many transpilers available on the Internet like
Cetus or ROSE, but most of them have fixed target
languages. With the help of PTC this limitation can be
removed and a single language can be used to generate
native executable for many platforms.

Rohit Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1629-1631

www.ijcsit.com 1630

REFERENCES
1. A. V. Aho, M. S. Lam, R. Sethi and J. D. Ulman, “Compilers:

Principles, Techniques and Tools”, 2nd ed., Pearson Education Inc.,
2013, ISBN-13: 978-81-317-2101-8.

2. J. J. Donovan, “Systems Programming”, Tata McGraw-Hill Edition,
1991, ISBN-13: 978-0-07-460482-3.

3. Computer Language Benchmarks Game,
 http://benchmarksgame.alioth.debian.org/u64q/java.html

Rohit Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1629-1631

www.ijcsit.com 1631

